
What virtual memory is 

Virtual memory is all about making use of address space. 

The address space of a processor refers the range of possible addresses that it can use when 

loading and storing to memory. The address space is limited by the width of the registers, since 

as we know to load an address we need to issue a load instruction with the address to load from 

stored in a register. For example, registers that are 32 bits wide can hold addresses in a register 

range from 0x00000000 to 0xFFFFFFF. 2^32 is equal to 4GB, so a 32 bit processor can load or 

store to up to 4GB of memory. 

64 bit computing 

New processors are generally all 64-bit processors, which as the name suggests has registers 64 

bits wide. As an exercise, you should work out the address space available to these processors 

(hint: it's big!). 

64-bit computing does have some trade-offs against using smaller bit-width processors. Every 

program compiled in 64-bit mode requires 8-byte pointers, which can increase code and data 

size, and hence impact both instruction and data cache performance. However, 64-bit processors 

tend to have more registers, which means less need to save temporary variables to memory when 

the compiler is under register pressure. 

Canonical Addresses 

While 64-bit processors have 64-bit wide registers, systems generally do not implement all 64-

bits for addressing — it is not actually possible to do load or store to all 16 exabytes of 

theoretical physical memory! 

Thus most architectures define an unimplemented region of the address space which the 

processor will consider invalid for use. x86-64 and Itanium both define the most-significant valid 

bit of an address, which must then be sign-extended (see the section called “Sign-extension”) to 

create a valid address. The result of this is that the total address space is effectively divided into 

two parts, an upper and a lower portion, with the addresses in-between considered invalid. This 

is illustrated in Figure 6.1, “Illustration of canonical addresses”. Valid addresses are 

termed canonical addresses (invalid addresses being non-canonical). 

Figure 6.1. Illustration of canonical addresses 
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The exact most-significant bit value for the processor can usually be found by querying the 

processor itself using its informational instructions. Although the exact value is implementation 

dependent, a typical value would be 48; providing 248 = 256 TiB of usable address-space. 

Reducing the possible address-space like this means that significant savings can be made with all 

parts of the addressing logic in the processor and related components, as they know they will not 

need to deal with full 64-bit addresses. Since the implementation defines the upper-bits as being 

signed-extended, this prevents portable operating systems using these bits to store or flag 

additional information and ensuring compatibility if the implementation wishes to implement 

more address-space in the future. 

Using the address space 

As with most components of the operating system, virtual memory acts as an abstraction 

between the address space and the physical memory available in the system. This means that 

when a program uses an address that address does not refer to the bits in an actual physical 

location in memory. 

So to this end, we say that all addresses a program uses are virtual. The operating system keeps 

track of virtual addresses and how they are allocated to physical addresses. When a program does 

a load or store from an address, the processor and operating system work together to convert this 

virtual address to the actual address in the system memory chips. 



Pages 

The total address-space is divided into individual pages. Pages can be many 
different sizes; generally they are around 4 KiB, but this is not a hard and fast 
rule and they can be much larger but generally not any smaller. The page is 
the smallest unit of memory that the operating system and hardware can deal 
with. 

Additionally, each page has a number of attributes set by the operating 
system. Generally, these include read, write and execute permissions for the 
current page. For example, the operating system can generally mark the code 
pages of a process with an executable flag and the processor can choose to 
not execute any code from pages without this bit set. 

Figure 6.2. Virtual memory pages 

 
 
 

Programmers may at this point be thinking that they can easily allocate small 
amounts of memory, much smaller than 4 KiB, using malloc or similar calls. 
This heap memory is actually backed by page-size allocations, which 
the malloc implementation divides up and manages for you in an efficient 
manner. 

 

Physical Memory 

Just as the operating system divides the possible address space up into 
pages, it divides the available physical memory up into frames. A frame is just 
the conventional name for a hunk of physical memory the same size as the 
system page size. 



The operating system keeps a frame-table which is a list of all possible pages 
of physical memory and if they are free (available for allocation) or not. When 
memory is allocated to a process, it is marked as used in the frame-table. In 
this way, the operating-system keeps track of all memory allocations. 

How does the operating system know what memory is available? This 
information about where memory is located, how much, attributes and so forth 
is passed to the operating system by the BIOS during initialisation. 

 

Pages + Frames = Page Tables 

It is the job of the operating system is to keep track of which of virtual-page 
points to which physical frame. This information is kept in a page-table which, 
in its simplest form, could simply be a table where each row contains its 
associated frame — this is termed a linear page-table. If you were to use this 
simple system, with a 32 bit address-space and 4 KiB pages there would be 
1048576 possible pages to keep track of in the page table (232 ÷ 4096); hence 
the table would be 1048576 entries long to ensure we can always map a 
virtual page to a physical page. 

Page tables can have many different structures and are highly optimised, as 
the process of finding a page in the page table can be a lengthy process. We 
will examine page-tables in more depth later. 

The page-table for a process is under the exclusive control of the operating 
system. When a process requests memory, the operating system finds it a 
free page of physical memory and records the virtual-to-physical translation in 
the processes page-table. Conversely, when the process gives up memory, 
the virtual-to-physical record is removed and the underlying frame becomes 
free for allocation to another process. 

 

Virtual Addresses 

When a program accesses memory, it does not know or care where the 
physical memory backing the address is stored. It knows it is up to the 
operating system and hardware to work together to map locate the right 
physical address and thus provide access to the data it wants. Thus we term 



the address a program is using to access memory a virtual address. A virtual 
address consists of two parts; the page and an offset into that page. 

Page 

Since the entire possible address space is divided up into regular sized pages, every possible 

address resides within a page. The page component of the virtual address acts as an index into 

the page table. Since the page is the smallest unit of memory allocation within the system there is 

a trade-off between making pages very small, and thus having very many pages for the 

operating-system to manage, and making pages larger but potentially wasting memory 

Offset 

The last bits of the virtual address are called the offset which is the location difference between 

the byte address you want and the start of the page. You require enough bits in the offset to be 

able to get to any byte in the page. For a 4K page you require (4K == (4 * 1024) == 4096 == 

212 ==) 12 bits of offset. Remember that the smallest amount of memory that the operating 

system or hardware deals with is a page, so each of these 4096 bytes reside within a single page 

and are dealt with as "one". 

Virtual Address Translation 

Virtual address translation refers to the process of finding out which physical page maps to 

which virtual page. 

When translating a virtual-address to a physical-address we only deal with the page number . 

The essence of the procedure is to take the page number of the given address and look it up in 

the page-table to find a pointer to a physical address, to which the offset from the virtual address 

is added, giving the actual location in system memory. 

Since the page-tables are under the control of the operating system, if the virtual-address doesn't 

exist in the page-table then the operating-system knows the process is trying to access memory 

that has not been allocated to it and the access will not be allowed. 

Figure 6.3. Virtual Address Translation 



 
 

We can follow this through for our previous example of a simple linear page-table. We 

calculated that a 32-bit address-space would require a table of 1048576 entries when using 4KiB 

pages. Thus to map a theoretical address of 0x80001234, the first step would be to remove the 

offset bits. In this case, with 4KiB pages, we know we have 12-bits (212 == 4096) of offset. So 

we would right-shift out 12-bits of the virtual address, leaving us with 0x80001. Thus (in 

decimal) the value in row 524289 of the linear page table would be the physical frame 

corresponding to this page. 

You might see a problem with a linear page-table : since every page must be accounted for, 

whether in use or not, a physically linear page-table is completely impractical with a 64-bit 

address space. Consider a 64-bit address space divided into (generously large) 64 KiB pages 

creates 264/216 = 252 pages to be managed; assuming each page requires an 8-byte pointer to a 

physical location a total of 252/23 = 249 or 512 GiB of contiguous memory is required just for the 

page table! 

 

Example 



Logical Addresses 

With a virtual memory system, the main memory can be viewed as a local store for a 

cache level whose lower level is a disk. Since it is fully associative there is no need 

for a set field. The address just decomposes into an offset field and a page number 

field. The number of bits in the offset field is determined by the page size. The 

remaining bits are the page number. 

An Example 

A computer uses 32-bit byte addressing. The computer uses paged virtual memory 

with 4KB pages. Calculate the number of bits in the page number and offset fields of 

a logical address. 

Answer 

Since there are 4K bytes in a cache block, the offset field must contain 12 bits (212 = 

4K). The remaining 20 bits are page number bits. 

Thus a logical address is decomposed as shown below. 

20 12 

page number offset 

 

Page Tables 

Virtual memory address translation uses page tables. These are simple arrays in 

memory indexed by page number. A page table base register (PTBR) holds the base 

address for the page table of the current process. 

Each page table entry contains information about a single page. The most important 

part of this information is a frame number — where the page is located in physical 

memory. Address translation combines the frame number with the offset part of a 

logical address to form a physical address. 



The Page Table Base Register (PTBR) 

Each process running on a processor needs its own logical address space. This can 

only be realized if each process has its own page table. To support this, a processor 

that supports virtual memory must have a page table base register that is accessible by 

the operating system. For operating system security, this register is only accessible 

when the processor is in system mode. 

The operating system maintains information about each process in a process control 

block. The page table base address for the process is stored there. The operating 

system loads this address into the PTBR whenever a process is dispatched. 

Page Table Entries 

A page table entry contains information about an individual page in a process's logical 

address space. It typically has a size of 4 bytes (32 bits). It contains the following 

kinds of information. 

 1 bit indicating if the entry is valid. It is valid only when the page is legal for the 
process and is in memory. The hardware will trigger an exception if this bit 
indicates the entry is not valid. The operating system needs another bit to 
distinguish between legal and illegal accesses. 

 2 or 3 access control bits. These bits can control 

o read access — load instructions 

o write access — store instructions 

o execute access — instruction fetches 

 A "dirty" bit to indicate if the page has been modified. A page that has a frame 
allocated to it but has not been accessed for a while may need to have its 
frame assigned to a recently accessed page. This is called page replacement. If 
a page is dirty and it needs to be replaced then the page needs to be written 
to the disk. 

 Bits used by the operating system for approximating how long it has been 
since the page has been accessed. These bits determine good candidates for 
replacement. The hardware must provide some support for updating this 
information. It can be as simple as a single bit that is set whenever a page is 
accessed. 

 Bits to represent the frame number. 



When the hardware attempts to access memory and the valid bit is false, the hardware 

does not need any of the remaining information. It just triggers an exception to bring 

up the operating system. The operating system can set the valid bit to false for pages 

that are swapped out to a disk. It can use all of the bits except the valid bit to record 

the disk location. 

With 32 bit physical addresses and 4KB pages the frame number only requires 20 bits. 

Then a 4B page table entry provides more than enough bits. 

Logical Memory Access 

A logical memory access (instruction fetch, load, or store) involves two physical 

memory acesses: 

 an access to retrieve the page table entry, and 

 an access to fetch an instruction or load or store data. 

If nothing is done about it, this doubles the latency for logical memory accesses. All 

but the very earliest processors that supported virtual memory have used a translation 

lookaside buffer to eliminate most of the page table entry retrievals. 

The Translation Lookaside Buffer 

The translation lookaside buffer is just a cache that holds recently accessed page table 

entries. It can achieve very small miss rates with just a few thousand entries. 

 

 

Page Table Size 

The size of a page table is given by the following equation. 

   
= 
  

logical address space size 

  
× 
   page table size  page table entry size 

 page size 
 



For example, many processors have 32-bit logical addresses, which results in a 4GB 

logical address space size. The page table entries size is usually 4B. If the page size is 

4KB then the page table size is 

   
= 
  

4GB 

  
× 
     = 

  page table size  4B 4MB 

 4KB 
  

This is excessive, especially on a processor that is running hundreds or even 

thousands of processes. About 15 years ago, many introductory programming classes 

had all students running their programs on a mainframe computer. Imagine perhaps 

400 students running "Hello, World!" programs, each using 4MB just for page tables. 

Most processors use multilevel page tables to reduce the size of page tables for small 

programs. 

 

 


